2021年9月11日 星期六

消費者行為市場分析技術(下)

消費者行為市場分析技術:數據演算如何提供行銷解決方案
Marketing Analytics, 2nd edition, 
A practical guide to improving consumer insights using data techniques

麥可.格里斯比(Mike Grigsby)

第三篇 相互關係類型統計法
09 我的(消費者)市場概況如何?
- 欲展示各區隔市場,並證明彼此之間已有效區隔,需要用到的技術稱為「側寫」(profiling)
一般而言,這可顯示各重要變數(尤其是較次數和對行銷媒介的回應)的平均數或頻率,
快速衡量每個區隔市場的差異。
注意,區隔市場之間的差異越大,(對各區隔市場實施的)策略會越明顯。
- 依區隔市場顯示關鍵績效指標(KPI)平均數的方法很常見,但很多時候,其他指標更能展現差異。
使用比率的話,時常可以更快突顯差異,亦即將各區隔市場的平均數除以整體平均數。
舉例來說,區隔市場A的平均營收為1500,區隔市場B的平均為750,總平均(整體市場總計)為1000。
將區隔市場A的平均數除以整體平均數1500/1000=1.5,也就是說,區隔市場A的營收比總平均多50%。相較之下,區隔市場B為750/1000=0.75,表示該區隔市場對營收的貢獻比總平均少25%。依區隔市場對所有數據算出比率,很快就能看出其中落差,尤其是差異甚小的情況特別明顯。
- 再舉個例子,區隔市場A的回應率是1.9%,整體回應率為1.5%。
雖然兩者(單一區隔市場和整體)表面上只相差0.4%,但換算成比率的話就是1.9%/1.5%,
亦即區隔市場A比總平均大27%。我們之所以喜歡(也應該)選用比率,原因在此。
- 雖然看見各區隔市場之間的龐大差異已夠令人滿意,但側寫最饒富趣味的地方往往在於命名每個區隔市場。開始之前,請先體認一點:為區隔市場命名有助於區分各市場,區隔的市場越多,命名越顯得重要。
- 判別分析可以輕鬆完成這項任務。
(在SAS程式中對樣本套用proc discrim指令,就能得到方程式,
依各消費者劃入各區隔市場的機率予以評分,一旦定義好類別「區隔市場」,就能在方程式中放入合適的變數,預測消費者所屬的類別「區隔市場」,這是很常見的做法)。
- 市場區隔探究的是對消費者重要的因素,而非企業。
- 市場區隔可為市場研究、行銷策略、行銷傳播和市場經濟等方面提供洞見。
- 務必釐清每個區隔市場自成一格的原因。每個區隔市場都應有不同的策略,否則劃分為區隔市場將無意義。

10 市場區隔
- 市場區隔的各種方法:
商業準則、卡方自動交互作用偵測、階層式集群分析法、K平均演算法集群分析、潛在類別分析等。
- 市場區隔的目標是要增加淨利,而每個區隔市場的最終目的,則是要有效運用策略,
創造交叉銷售追加銷售的機會。
- 由分析中得出洞見,我們可以更認識每個區隔市場主要的痛點(pain point),
這也意味著我們可以對各市場對症下藥,
在適合的時機釋出適合的訊息,用足以打動人心的價格提供適當的產品選擇。
- 實際使用行為區隔程序:擬定策略、收集行為資料、製作/使用其他資料、執行選擇的演算法,以及側寫區隔市場。
- 區隔變數和側寫變數:
「區隔變數」是指建立區隔市場所使用的變數,剩下的變數則屬於「側寫變數」。
- 除此之外,其他(行為)變數都會以演算法檢測是否顯著,顯著者會保留下來,作為區隔變數。
總之請記住,只要不屬於區隔變數,即為側寫變數。
過度取樣(oversampling):強制提高特定數據代表性的一種取樣手法,使其樣本數比隨機取樣更多。
若簡單隨機取樣產生該特定數據的數量太少,即可採取過度取樣。
標準化:第一階段只是單純檢測每個變數是否「非常態」。
一般而言,此階段會計算每個變數的Z分數,或將各變數標準化,
接著刪去分數超過3.0標準差的觀察值
(常態分布下,三個標準差已涵蓋99.9%觀察值,因此超出者已屬於非常態)。
進入第二階段,需要使用K平均演算法檢測樣本是否為常態。
- 關鍵在於,比起逐一檢查每個變數是否異常,這種方法採取多自變數方式,
找到一群擁有非常態傾向的消費者。
因此我們需要刪除這些觀察項(消費者),不再繼續分析。
- 卡方自動交互作用偵測(chi-squared automatic interaction detection,CHAID)
- 卡方自動交互作用偵測會挑選依變數,接著檢視自變數,找出「區分」依變數效果最佳的自變數。
所謂效果「最佳」,是根據卡方檢測(chisquared test)的結果而論。
- RFM模型採用的是企業觀點,並非從消費者的角度出發。
- RFM模型只能試圖移動消費者版圖,無助於策略擬定。
- K平均演算法(k-means clustering)大概是最熱門的市場區隔(分析)的技術了。
SAS程式(使用proc fastclus)有相當強大的演算法。
- K平均演算法不具任何診斷功能,對於這些重要條件毫無任何協助,讓你憑著主觀的直覺全權決定。
-- 有幾點需要注意:
第一,K平均演算法方法以歐式距離平方根為依據,來決定觀察項的歸屬,因此並非統計屬性,而是數學性質的分析法。
第二,集群中心值(即集群)高度取決於資料集的順序。若將資料集重新排序,最後可能會得到天差地遠的區隔結果。
第三,此方法幾乎毫無診斷功能可言。
第四,由於群集呈現自然球形(因為是根據與中心值的距離,決定觀察值歸屬何處),集群的大小會很相似
這不太可能符合真實市場的情況。雖然K平均演算法又比RFM模型和卡方自動交互作用偵測更進一步,但顯然仍有許多缺陷。
- 市場數和顯著變數都不是K平均演算法能夠提供的資訊
- 「行為區隔」是採消費者的觀點,主要使用消費者交易和行銷媒介回應等資料
確切了解消費者看中的事情,其主要精神就是以消費者為核心。
所有策略行銷活動都適合使用「行為區隔」,包括:選擇目標客群、
訂定最佳折扣、了解消費者的通路偏好/決策歷程、釐清產品滲透率/品類管理等。
「行為區隔」不僅能協助行銷人員選擇目標市場,還能完成更多工作。
- 行為出自於動機,不管核心動機或經驗動機。
舉凡結帳、光臨店面、使用產品(滲透率)、開啟及點擊行銷媒介並給予回應,都是行為,
正是這些行為創造了財務成果、營收、成長、終身價值和利潤。
- 核心動機主要是無形的態度、品味和偏好、生活方式、金錢價值觀、通路偏好、益處或需求激發。
另外也有經驗動機,這是行為的次要成因,通常取決於品牌曝光。
這些都不是行為本身,但會觸發後續行為。這種次要成因包括:
忠誠度互動程度滿意度服務禮節速度
值得留意的是,RFM模型使用的最近一次消費和頻率
(互動程度指標)就屬於次要成因,而同樣會使用的金額相關指標,則是財務結果數據。
- 由此可知,RFM模型僅使用互動和財務等方面的資料,並未使用行為資料。
- 「行為區隔」和RFM模型有三點不同:「行為區隔」(通常)使用較多行為資料;
「行為區隔」使用這些資料的目的在於了解消費者行為;「行為區隔」會採取統計方法,
將各區隔市場做最大程度的區分。
簡單比較RFM模型卡方自動交互作用偵測K平均演算法潛在類別模型,即可窺得箇中意義。
RFM模型使用多個自變數(通常是三個變數),但無法處理多個依變數(即同時使用三種維度)。
RFM模型屬於數學性質的分析法,就統計而言並非理想選擇。
潛在類別分析(latent class analysis,LCA)可以大幅改善前述缺失,堪稱目前最先進的市場區隔技術。
- 潛在類別分析可找出理想的區隔市場數量、識別顯著變數,以及計算每一成員隸屬各個區隔市場的機率。簡言之,沒有任何事情需要主觀決定!
- 潛在類別分析是一種統計技術,而非數學性質的分析法(例如階層式分析或K平均演算法)。
- 潛在類別分析可以使用貝氏資訊準則(Bayes Information Criterion,BIC)LL(負對數概似值)錯誤率,為你提供診斷結果,在變數和資料集的基礎上,指出「最理想」的區隔市場。
- 潛在類別分析(LCA)是一種貝氏(最大概似)方法,具有統計本質。
由於消費者行為屬於一種機率(甚至是不理性的)現象,
因此使用統計分析法會比數學屬性的方法更為適切。
透過此方法提供的診斷功能,我們可以知道區隔市場的最佳數量,
也能了解哪些變數對市場區隔最為重要。

第四篇 攸關日常行銷的其他重要主題
11 統計檢定
- 試驗設計:以歸納方式建立統計測試,其中採用的刺激因素會隨機考量變異數、
信賴度等不同條件,並與控制組對照比較。
- 關於樣本規模的問題,建議考慮以下因素:
母體的標準差、希望的信賴水準(以檢測結果能否推斷母體的真實情形)、想檢測的敏感度,
以及預期回應。

12 結合大數據並採取大數據分析
- 歸因模式(attribution modelling)依行為區隔的結果,對各個接觸點施以加權。
策略上,若從產品組合的角度來看,我們可以從大數據中得知哪個接觸點對消費者具有價值。
因此,對於哪些消費者所重視的接觸點
(頁面、網站、網路、群組、社群、商店、部落格、具有影響力的名人等),我們就得多加注意。
- 不需要遍尋各種新奇的演算法,或是衍生出迥異的策略。
我們只需擁抱有關消費者行為的不同層次資訊,在分析時將所有相關因素納入考量。
對於此事,我們早就擁有相關的分析技術(存在好幾十年了)。
像是聯立方程式、結構方程式、向量自我迴歸等。
- 本書前幾個章節中,我們將廣義的統計分析技術區分成兩大類型:
依附方程式類型(一般迴歸、羅吉斯迴歸、存活分析模型)
以及相互關係類型的分析法(市場區隔、因素分析等)
以下演算法使用的語言進一步擴展了前述定義,共區分為監督式學習、非監督是學習和強化學習:
1. 監督式學習:有一個引導(目標)變數,而目的就是預測該變數。
這類技術包括迴歸和分類類型的方法,例如決策樹(decision tree)隨機森林(random forest)
K最近鄰演算法(K-nearest neighbour)邏輯迴歸等。
2. 非監督式學習:沒有引導變數。
市場區隔降維(dimension reduction)類型的方法都屬於此類,
例如集群分析類神經網路因素分析等。
3. 主要運用人工智慧(AI),在演算法中融入回饋迴圈。
類似馬可夫鏈(Markov)的處理程序,一般都可歸於這類技術,例如Q-learning。
- 從技術面來看,截至目前所介紹的方法都屬於迴歸或分類屬性,具線性本質,
可表示為BXi,其大多僅涉及明顯的變數。也就是說,變數就是該方法要量測的項目。
除了這類型之外,還有一種非線性的技術(假定使用潛在變數),稱為「類神經網路」。
舉凡依變數類型即相互關係類型的技術(分類形式),都可使用類神經網路。
- 傳統的計量經濟方法依然足以解決大部分市場分析問題。

沒有留言:

張貼留言