2026年1月17日 星期六

當數位轉型碰上生成式AI

當數位轉型碰上生成式AI:臺灣150家企業轉型的策略性思維和變革實務

第一章 AI的起源與前世今生
▷展望未來,真正具有創造力的生成式AI應該可以做到更專業的工作。
例如主動根據目前市場情報,預估各種商品未來一年需求、分析客戶的喜好進而做到精準行銷。

第三章 你了解的數位轉型,真的是數位轉型嗎?
AI就是電腦科學家先模擬人類思考過程,接著設計電腦程式來模擬,
如此一來,就提供了一套以電腦做決策的簡單方法;接下來的二十年之間,
AI專家又發展出利用少量已知答案的樣本,透過演算法的方式自動學習(又稱作「機器學習」),
由此而預測未知的樣本,更貼近人類的決策模式

第四章 傳產業數位轉型必勝密技
▷正因為數位轉型的實質意義在於企業重新定義商業模式營運流程客戶體驗
並且進一步找到提升競爭力與創造營收的方式,所以勢必會從「商機」中發現新的商業模式與服務

第五章 產業數位轉型案例解析
主題4:如何熟悉消費者偏好,建立產品口碑以累積忠實客戶
▷任何產業都應該實地做消費者心理分析,深入了解大眾或小眾市場的需求,
透過週期性和不定性的市場研究做消費者調查、重點小組討論和數據分析
企業能深入了解消費者的偏好和行為,把握市場趨勢,調整產品和市場策略
▷同時進行廣泛的潛在受眾生活習性分析網路聲量排行忠實客戶數據分析比對
辨識高熟度的熱門菜或主廚推薦私房菜,讓消費者在進入餐廳前,有熟悉及對焦後的清晰感。
▷透過與消費者互動、分享有價值的健康議題內容,回應消費者問題。
最後,透過監測閱讀者指數的成長與衰退,精準投放擴散至有效社群,計算曝光量,創造口碑聲量,成功提高餐飲品牌能見度

主題5:如何建立有感的優質服務,在對的時間點提供最好的服務?
▷隨著數據的不斷增長和分析技術的進步,服務業勢必更加重視數據的應用。
透過收集、分析和利用客戶數據,企業可以提供更加個性化的服務體驗,精準滿足客戶需求,並建立更優良的客戶關係。

主題6:如何進行分眾行銷,以互動擴散粉絲群?
▷具體想像並提出像是該如何提供給客戶這個商品最有價值的內容,以及用什麼樣的方式提供。
這其實早就是服務業常用的概念:為什麼客戶要買我這個東西?
接下來,才是要清楚地知道目標客群在哪裡。
▷一般行銷,常會將市場分為不同的細市場或分眾每個分眾或是族群應該找出共同的特徵
例如年齡、性別、地理位置、興趣、行業、收入水平等,然後才在企業的粉絲群中分享有價值的內容,如文章、YouTube、圖片或獨特的資訊,確保這些內容與產品的粉絲群的興趣相關並具有吸引力
使用關鍵績效指標來評估每個分眾的表現,並根據成效調整短期策略,為每個分眾制定特定的行銷策略。這個策略可能包括產品定價宣傳活動產品設計分發鋪貨促銷方式
重點是,企業必須確保能夠持之以恆地更心和管理粉絲群,不斷提供新的內容和活動,以保持成員的參與熱度。

若是沒有引進足夠的IT資訊技術進行數據整合,就稱不上是數位轉型,只能說是數位優化,就是門市零售之流程優化,這就是前面提到的-低估了自己的能耐。
真正的數位轉型,是希望透過自動導購的概念,在經過精密計算後提供每一位客戶最佳化商品推薦以提升潛在客戶從線下瀏覽行為轉換至線上實際消費,或是導引線上會員帶著電子折價券前往實體門市消費
▷簡單來說,AI推薦系統所採用的方法,是結合用戶過去的行為(例如以前購買過、選擇過、評價過的物品等)與其他用戶的相似決策,以建立特定族群的推薦模型,再用來預測哪一類用戶對哪些物品可能感興趣;也就是說,AI推薦系統會根據用戶對物品的感興趣程度,推薦給他類似性質的商品,例如保養品、美妝用品和睫毛膏等,就屬於「相似」的商品。


▷用更簡單的話說,就是要用演算法清楚地描繪出消費受眾的樣態消費者及會員輪廓可以透過業者內部資料而整理分析出來,但在網友最常用的社群LINEFB上,卻無法這麼清楚地探知社群會員的輪廓,所以常採用無差別的方式推播訊息或廣告,這一來,不僅廣告成本增加了,還常會使社群會員覺得垃圾訊息太多而封鎖社群推播
▷解決這個問題的高階演算法方式,其中一種是透過LINE問券活動、會員點擊圖文訊息的回饋,然後從系統後台去對消費者貼標,定義該消費者的屬性,也就是「AI演算法標籤」。
這些更明確的標籤,例如喜歡的東西類型、嗜好的運動、購買價格區間、新品資訊,或是喜歡情侶款、熱銷排行榜等,眾多關鍵詞組或標籤都可以直接分析出社群會員的輪廓再由精準的分眾演算法技術接手讓行銷部門可針對特定消費者喜歡的東西(或是主題)去投放廣告,或推播地區性熱門主題廣告,鼓勵消費者到實體門市憑券消費。

主題7:精準行銷-為什麼老闆始終覺得我們離顧客有點遠?
▷近年來,許多零售業的管理者不但逐漸了解,同時也已巧妙地善用銷售數據來預測消費者的行為偏好,例如購買A產品的客戶也會購買B產品,或者促使客戶購買C產品的是什麼動機
但是,創造全新的客戶體驗卻不僅僅是以數位科技收集大量的消費數據而已,還得在更多的情境下都能夠精確提供個人化的客戶體驗